Ring-shear test data of glass beads <50 µm used for analogue experiments in the tectonic modelling labs at GFZ Potsdam and the Institute of Geophysics of the Czech Academy of Sciences, Prague
Cite as:
Rudolf, Michael; Rosenau, Matthias; Warsitzka, Michael; Zavada, Prokop (2022): Ring-shear test data of glass beads <50 µm used for analogue experiments in the tectonic modelling labs at GFZ Potsdam and the Institute of Geophysics of the Czech Academy of Sciences, Prague. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2022.003
Status
I N R E V I E W : Rudolf, Michael; Rosenau, Matthias; Warsitzka, Michael; Zavada, Prokop (2022): Ring-shear test data of glass beads <50 µm used for analogue experiments in the tectonic modelling labs at GFZ Potsdam and the Institute of Geophysics of the Czech Academy of Sciences, Prague. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2022.003
Abstract
This dataset provides friction data from ring-shear tests on glass beads with a diameter of less than 50 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C.
According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.47 , µD = 0.44, and µR = 0.47, respectively (Table 5). Cohesion of the material ranges between 50 Pa and 70 Pa. The material shows a neglectable rate-weakening of <1% per ten-fold change in shear velocity v.
Methods
The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016) and Ritter et al. (2016).
Authors
Rudolf, Michael;GFZ German Research Centre for Geosciences, Potsdam, Germany
Rosenau, Matthias;GFZ German Research Centre for Geosciences, Potsdam, Germany
Warsitzka, Michael;Institute of Geophysics, Czech Academy of Sciences, Prague, Czech Republic;Bundesgesellschaft für Endlagerung mbH (BGE), Peine, Germany
Zavada, Prokop;Institute of Geophysics, Czech Academy of Sciences, Prague, Czech Republic
Contact
Rosenau
(Matthias); GFZ German Research Centre for Geosciences, Potsdam, Germany; ➦
Contributors
HelTec - Helmholtz Laboratory for Tectonic Modelling (GFZ German Research Centre for Geosciences, Germany); Rosenau
affiliation: Institute of Geophysics, Czech Academy of Sciences, Prague, Czech Republic
titles
title: Ring-shear test data of glass beads <50 µm used for analogue experiments in the tectonic modelling labs at GFZ Potsdam and the Institute of Geophysics of the Czech Academy of Sciences, Prague
publisher: GFZ Data Services
publicationYear: 2022
subjects
subject: EPOS
subject: TCS MSL
subject: analogue models of geologic processes
subject: multi-scale laboratories
subject: property data of analogue modelling materials
CharacterString: Ring-shear test data of glass beads <50 µm used for analogue experiments in the tectonic modelling labs at GFZ Potsdam and the Institute of Geophysics of the Czech Academy of Sciences, Prague
CharacterString: This dataset provides friction data from ring-shear tests on glass beads with a diameter of less than 50 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C.
According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.47 , µD = 0.44, and µR = 0.47, respectively (Table 5). Cohesion of the material ranges between 50 Pa and 70 Pa. The material shows a neglectable rate-weakening of <1% per ten-fold change in shear velocity v.
pointOfContact
CI_ResponsibleParty
individualName
CharacterString: Rosenau
organisationName
CharacterString: GFZ German Research Centre for Geosciences, Potsdam, Germany
CI_OnLineFunctionCode (codeList=http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_OnLineFunctionCode codeListValue=http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_OnLineFunctionCode_information): information
CharacterString: The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016) and Ritter et al. (2016).